
"

Robert Bräutigam

MATHEMA So�ware GmbH.

OBJECT-ORIENTED
DOMAIN DRIVEN

DESIGN

GOAL
TO INTRODUCE A NEW** DESIGN

PARADIGM WHICH INCREASES
MAINTAINABILITY* OF SOFTWARE.

OO AND DDD?
ISN'T THAT REDUNTANT?

WHAT WE LEARN...
public interface Animal {
 void speak();
}

public final class Cat implements Animal {
 @Override
 public void speak() {
 System.out.println("Meow...");
 }
}

public final class Dog implements Animal {
 @Override
 public void speak() {
 System.out.println("Woof...");
 }
}

"ENTERPRISE" CODE...
public interface Animal {
 String getSpeech();
}

public final class Cat implements Animal {
 private final String speech;
 ...
 @Override
 public String getSpeech() {
 return speech;
 }
}

public final class SpeechService {
 public void speak(Animal animal) {
 System.out.println(animal.getSpeech());
 }
}

WAIT A SECOND...

WHAT IS ENCAPSULATION THEN?
It means having public and private parts.

It means having secrets!

Having secrets means to have an effective abstraction

Effective abstraction means to solve a problem we
don't have to think about ever again.

WHERE IS MY ENCAPSULATION?
public interface Animal {
 String getSpeech();
}

public final class Cat implements Animal {
 private final String speech;
 ...
 @Override
 public String getSpeech() {
 return speech;
 }
}

public final class SpeechService {
 public void speak(Animal animal) {
 System.out.println(animal.getSpeech());
 }
}

THESE THINGS TOO?
Cohesion
Coupling
Tell, don't ask
Law of Demeter
etc...

GO HOME AND RETHINK YOUR LIFE

OK, SO NOW WHAT?
Objects must have hidden state

Objects should do stuff, instead of giving out data

Objects' instance variables should not be given out

⇒ SOUNDS LIKE WE SHOULD
AVOID GETTERS

HOW DO WE DO DDD WITHOUT
GETTERS

BUILDING BLOCKS OF DDD

VALUE OBJECTS
Things that do not have an identity. Objects

representing the same value are interchangeable.

COMMONLY IMPLEMENTED AS
public final class Amount {
 private final BigDecimal value;
 private final Currency currency;

 public Amount(BigDecimal value, Currency currency) {
 this.value = value;
 this.currency = currency;
 }

 public BigDecimal getValue() {
 return value;
 }

 public Currency getCurrency() {
 return value;
 }

 ...equals(), hashCode(), toString()...
}

THAT'S NOT COOL!
There is nothing hidden.

Therefore there is no problem solved here.

This thing has no reason to exist!

HOW CAN WE FIX THIS?

The business people talk a lot about "Amounts", so
let's assume it's something we need to have.

What business problem could the "Amount" solve?

OO VALUE OBJECT
public final class Amount {
 private final BigDecimal value;
 private final Currency currency;

 public Amount(BigDecimal value, Currency currency) {
 this.value = value;
 this.currency = currency;
 }

 public Amount add(Amount other) { ... }

 public boolean largerThan(Amount other) { ... }

 ...
}

ENTITY OBJECTS
Things that have an identity. Objects are not

interchangeable. Objects may represent the same
conceptual thing even if some attributes differ.

COMMONLY SEEN AS:

OH NO, NOT AGAIN!

public final class Customer {
 private final CustomerId customerId;
 private Name name;
 ...

 public Customer(CustomerId customerId, Name name, ...) {
 this.customerId = customerId;
 this.name = name;
 ...
 }

 ...getters, some setters...
}

HOW IT SHOULD LOOK:
public final class Customer {
 ...data doesn't matter...

 public void renameTo(Name newName) { ... }

 public void freezeCreditCards() { ... }

 public void unfreezeCreditCards() { ... }

 public CreditStatement createCreditStatement() { ... }

 ...
}

SERVICES
"Sometimes, it just isn't a thing." -- Eric Evans

Everything is an object. -- OO

"...any decomposition, however complicated the
domain, will result in the identification of a relatively

few kinds of objects and only objects. There will be
nothing "le� over" that is not an object." -- David West

"FIXING" SERVICES
"There are important domain operations that can't

find a natural home in an ENTITY or VALUE OBJECT." --
Eric Evans

Aha! It's not OO's fault, the building blocks are
incomplete!

PASSWORDSERVICE
(Vaughn Vernon)

WHY?

public class PasswordService {
 ...no hidden state...

 public String generateStrongPassword();

 public boolean isStrong(String password);

 public boolean isWeak(String password);

 ...
}

PASSWORD

It's actually a Value Object.

public final class Password {
 private final String password;

 public Password(String password) {
 this.password = password;
 }

 public boolean isStrong() { ... }

 public boolean isWeak() { ... }

 public static Password generateStrongPassword() { ... }
}

GroupMemberService.isMemberGroup()
public boolean isMemberGroup(Group aGroup, GroupMember aMemberGroup) {
 boolean isMember = false;
 Iterator<GroupMember> iter = aGroup.groupMembers().iterator();
 while (!isMember && iter.hasNext()) {
 GroupMember member = iter.next();
 if (member.isGroup()) {
 if (aMemberGroup.equals(member)) {
 isMember = true;
 } else {
 Group group =
 this.groupRepository().groupNamed(member.tenantId(), member.name());
 if (group != null) {
 isMember = this.isMemberGroup(group, aMemberGroup);
 }
 }
 }
 }
 return isMember;
}

Why not Group.contains()?
public final class Group implements GroupMember {
 private final Set<GroupMember> members;
 ...
 @Override
 public boolean contains(GroupMember potentialMember) {
 if (equals(potentialMember)) {
 return true;
 }
 return members.stream()
 .filter(member → member.contains(potentialMember))
 .findFirst()
 .isPresent();
 }
}
public final class User implements GroupMember {
 ...
 @Override
 public boolean contains(GroupMember potentialMember) {
 return equals(potentialMember);
 }
}

REPOSITORIES
A means to get an initial reference to an object.

"Provide methods to add and remove objects... [and]
methods that select objects..." -- Eric Evans

In other words a CRUD service.

PROBLEMS WITH REPOSITORIES
Reinforces data-based thinking
Not part of the Domain! Repositories are technical.
O�en implemented by violating encapsulation...

REPOSITORY VS.
ENCAPSULATION

NOT OK!

// Simplified from Vaughn Vernon's example
public class LevelDBTeamRepository {
 ...
 public void save(Team team) {
 String id = team.getTeamId().getId(); // LoD violation
 String name = team.getName(); // Privacy violation
 ...persist team to id + name...
 }
}

PERSISTENCE OPTION #1
public final class SqlCustomer implements Customer {
 private final Connection connection;
 private final String customerId;

 public SqlCustomer(String customerId,
 Connection connection) {
 this.customerId = customerId;
 this.connection = connection;
 }

 @Override
 public void freezeCreditCards() {
 connection.execute("update card set valid = 0 "+
 "where customerId = ?", customerId);
 }
}

PERSISTENCE OPTION #2
public final class Customer {
 ...private parts...

 public Json toJson() {
 ...
 }

 public static Customer fromJson(Json json) {
 ...
 }
}

AGGREGATE ROOT
Entities that exclusively control a set of internal

entities and value objects. Outside objects are not
allowed to hold references to internals, and the
aggregate root entity controls access, preserves

invariants.

Well, all objects must do this anyway...

LAYERED ARCHITECTURE

PROBLEMS WITH LAYERS
The "Domain" is only 1/4 of the Application
Layers usually leak data upwards and create
coupling (DTOs)
UI usually tightly coupled to Domain
UI (external interfaces) is usually second rate citizen

UI OF OBJECTS
import org.apache.wicket.Component;

public final class AccountNumber {
 private final String accountNumber;
 ...

 public Component display(String componentId) {
 return new Label(componentId, accountNumber);
 }
}

UI OF OBJECTS
import org.apache.wicket.Component;

public final class AccountNumber {
 private final String accountNumber;
 ...

 public Component display(String componentId) {
 return new Label(componentId, accountNumber);
 }

 public FormComponent<AccountNumber> displayEditable(String componentId) {
 return new TextField<>(componentId, ...);
 }
}

SUMMARY

BUILDING BLOCKS OF OO DDD

OO DDD
Ok, maybe we should not concentrate on the orignal

building blocks!

But, things that DDD adds to OO:

Learn and think about the domain. (As opposed to
technical stuff including building blocks)
Exercise and speak the design
Ubiquitous language
Bounded Context

THANKS

QUESTIONS?
robert@mathema.de

https://javadevguy.wordpress.com/

@robertbrautigam

